ในรายงานฉบับล่าสุด ซึ่งเผยแพร่มาเป็นปีที่ 12 นี้ ยังเผยว่าการย้ายความเป็นเจ้าของข้อมูลออกจากศูนย์กลางนั้น จะทำให้การเก็บข้อมูลส่วนตัวเฉพาะบุคคลบนอุปกรณ์และเครื่องมือต่างๆ มีประสิทธิภาพและความปลอดภัยยิ่งขึ้น
Thoughtworks บริษัทที่ปรึกษาด้านเทคโนโลยีระดับโลกที่ผสานกลยุทธ์การออกแบบและวิศวกรรมเพื่อขับเคลื่อนนวัตกรรมดิจิตัล ได้เผยแพร่รายงาน Technology Radar ฉบับที่ 27 ซึ่งเป็นรายงานประจำทุก 6 เดือนของ Thoughtworks ที่รวบรวมจากการสังเกต สนทนา และประสบการณ์ในการแก้ปัญหาความท้าทายทางธุรกิจที่ยากที่สุดของลูกค้าทั่วโลก ในฉบับล่าสุดนี้ ได้ตั้งข้อสังเกตเกี่ยวกับ Machine Leaning (ML) ว่าจากที่เคยต้องใช้ชุดข้อมูลขนาดใหญ่และการเข้าถึงพลังประมวลผลมหาศาลเพื่อจัดการกับปัญหาทางธุรกิจที่ซับซ้อนนั้น บัดนี้ องค์กรด้านไอทีสามารถใช้ประโยชน์จาก ML ได้เพิ่มขึ้น ทั้งยังสามารถนำไปปรับใช้ในหลายภาคส่วนมากขึ้นด้วย สืบเนื่องมาจากการพัฒนาของเครื่องมือ แอปพลิเคชัน และเทคนิคต่างๆ ที่ก้าวหน้าไปมาก
ด้วยประสิทธิภาพในการคำนวณที่ดีขึ้นบนอุปกรณ์ทุกขนาดและทุกประเภท รวมทั้งการใช้เครื่องมือแบบ open-source ที่แพร่หลายและใช้งานได้ง่ายขึ้น ได้ส่งผลให้ ML สามารถเข้าถึงได้ง่ายขึ้น แม้กระทั่งองค์กรที่มีขนาดเล็กมาก นอกจากนี้ ข้อกำหนด และข้อควรระวังของข้อมูลส่วนบุคคลที่เข้มงวดมากขึ้น ได้ผลักดันให้องค์กรต่างๆ พยายามค้นหาเทคนิค เช่น federated machine learning หรือการพัฒนาระบบ ML โดยไม่ต้องส่งข้อมูลส่วนบุคคลไปยังส่วนกลาง ทำให้ปลอดภัยมากขึ้น โดยเฉพาะข้อมูลที่มีความละเอียดอ่อน ที่ใช้งานร่วมกับ IoT และอุปกรณ์แบบพกพา นอกจากนี้ การพัฒนาระบบ ML ที่ต้องพึ่งพาคุณภาพของข้อมูลเป็นหลัก ได้ทำให้ข้อควรระวังต่างๆ ยังคงมีช่องโหว่อยู่ และเกิดอคติในชุดข้อมูลขึ้นได้ แต่อย่างไรก็ตาม เครื่องมือแบบ open source ก็กำลังช่วยสร้างความโปร่งใส ของอัลกอริทึมที่ใช้ในการตีความและจัดการข้อมูล
ดร. รีเบคกา พาร์สันส์ ประธานเจ้าหน้าที่บริหารฝ่ายเทคโนโลยี ของ Thoughtworks กล่าวว่า "เมื่อมีการจำกัดการใช้งานเฉพาะผู้ใช้งานและองค์กรด้านไอทีที่มีความเชี่ยวชาญขั้นสูงแล้วนั้น โมเดลและส่วนประกอบของ ML ที่องค์กรสามารถหามาได้ง่ายขึ้น และใช้งานได้ไม่ซับซ้อน ก็ช่วยลดอุปสรรคในการพัฒนาระบบ ทำให้องค์กรต่างๆ สามารถเข้าถึงและใช้ประโยชน์จากโซลูชัน ML ได้มากขึ้น องค์กรจึงควรเปิดรับการใช้งานเชิงปฏิบัติมากขึ้น เพื่อใช้ประโยชน์จาก ML ที่มีอยู่หลากหลาย ไม่ว่าจะเป็นขั้นตอนการปฏิบัติงาน การพัฒนาผลิตภัณฑ์ และการบริการ ซึ่งนอกจากจะเป็นแอปพลิเคชันที่พลิกโฉมระบบการทำงานแล้ว ก็ยังช่วยเพิ่มประสิทธิภาพอีกด้วย”
ประเด็นสำคัญใน Technology Radar ฉบับที่ 27 นี้ ได้แก่
ผู้สนใจสามารถดูข้อมูล Tech Radar แบบ interactive หรือดาวน์โหลดรายงานได้ที่ https://www.thoughtworks.com/en-th/radar
ช่องทางสำหรับข้อมูลเพิ่มเติม
ติดตามข้อมูลข่าวสารของ Thoughtworks ได้ทาง website Twitter LinkedIn และ YouTube